
FLOW ANALYTICS
PLATFORM FOR
OPERATIONAL

TECHNOLOGY (OT)

8608 Dakota Drive, Gaithersburg, MD 20877 / interest@3tsoln.com / 301.926.1080 / 3tsoln.com

Insight into the workings of an enterprise
is essential to effectively and efficiently

manage and defend its assets.

3 TERRITORY SOLUTIONS

PAGE 1: Problem Statement

PAGE 1: Summary of Proposed Approach

PAGE 2: Fundamental Goals

Dependency Identification

Security Baseline

Going Beyond “Just” Data Flow

Information Sharing & Integration

Identification of User Behavior

Automation

PAGE 3: Assumptions

PAGE 3: Summary of Approach

PAGE 3: Enclave Data Extraction

PAGE 4: Data Parsing / Script Development

PAGE 4: User Consumption

PAGE 4: Method to Define, Develop, and Implement Queries

PAGE 5: Weaknesses

PAGE 5: Summary of Technical Structure

PAGE 5: Tools

PAGE 6: Techniques

PAGE 6-7: Example Commands and Methodology

TABLE OF CONTENTS

PROBLEM
STATEMENT

SUMMARY OF
PROPOSED APPROACH

Insight into the workings of an enterprise is essential to effectively and

efficiently manage and defend its assets. However, in the operational

technology (OT) space, which includes medical devices and equipment (MDE)

and facility-related control systems (FRCS), stakeholders have a restricted

understanding of what is actually happening within their organizations. This is

painfully obvious when examining average dwell time (nearly one year), how

quickly new devices are discovered (some “new” devices have been on the

network for years), and the difficulty engineers / managers have with

quantitively stating their positions and needs.

The following approach is intended to create
a flow analytics platform for OT using
security techniques whose scalability is
compute-limited, functionally automatic,
and agnostic to the network environment.

The approach is not intended to establish an
illicit network discovery process. The
proposed techniques and tools will passively
collect information and will, at no time, inject
packets, nor will they dive into or rely upon
packet contents. All techniques will be
rooted in command-line inspection using
common, open, and simple tools to enable
scripting. The approach will not use tools or
techniques that cannot be scripted or
executed in batch. Further, to maximize
applicability, the tools will be restricted to

default / standard libraries and
configurations. The approach is intended to
be modular, meaning that new scripts can be
developed and added to the overall batch as
they are built out to allow for infinite
scalability (as compute allows, of course).

To minimize initial implementation costs, the
tools and techniques should initially be used
on traffic that will has a digestible Ethernet
header. It is likely that existing sensors on
the enclave will be or have been
configurated to capture this protocol.
Communication over twisted-pair and other
less common bus protocols should be
completed to round out the remaining 25%
to 40% of traffic only after a stable baseline
with Ethernet headers has been established.

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 1

FUNDAMENTAL
GOALS
Dependency Identification: The first key
function of flow analytics is to gain an
understanding of what influences what, and
how the timing of it all works together to
create a process. As illustrated in the
examples below, the approach allows for
queries to determine the who’s and what’s.
Meanwhile, time-stamping connection data
allows for a sort of session recreation
involving multiple machines, making it
possible to identify soft spots, bottlenecks,
and single points of failure.

Security Baseline: The second key function
of flow analytics is to gain an understanding
of what behavior is “normal” within a medical
subnet. This is especially important with MDE
and FRCS, as these systems are generally
quite deterministic. The query results will be
able to identify a baseline of active ports,
protocols, and services; confirm hardware
and possibly software inventories; and
inform intrusion detection criteria.

Going Beyond “Just” Data Flow: Once a
solid understanding of the data flows is
achieved, the approach is to be augmented
with real-world activities performed by the
clinical staff to understand how these flows
impact the organization’s mission. While it
may be tempting to immediately use the new
information to inform and implement
improvements to clinical efficiency, it is
necessary to first establish a measurable
baseline so that gains can be quantified and
studied. Initially, the focus should be on how

the flow of data might affect the delivery of
care, patient safety, or the operational
fitness of the facility.

Information Sharing & Integration: Far too
often, solutions are developed in a vacuum,
and the closest often seen to “sharing” is an
after-the-fact API built using a “set it and
forget it” methodology. This is not an
effective way to scale, and it unnecessarily
hinders defenders’ capabilities, often forcing
them to recreate a technique, script, or data
set that someone else may have already
executed. For this reason, all parts of the
proposed approach must be
technology-agnostic to allow integration
with existing tools. Sharing results, scripts,
and techniques is encouraged, within the
allownce of HIPAA or other regulations. At a
minimum, the outputs of queries should be
compatible with MOSAICS and the HBSS
suite.

Identification of User Behavior: Properly
crafted queries will provide insight into how
tools are being used / not used, and by
which users. This will allow organizations to
actively reduce their attack surface by
removing unnecessary vectors.

Automation: The approach will minimize the
need for human interaction / inspection
during the development and
implementation of new techniques and
scripts. It will also reduce the maintenance
tail by minimizing “special snowflakes” in
favor of standardization and automation.
This is crucial for scalability and freeing up
resources to continue moving the overall
platform forward.

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 2

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

ASSUMPTIONS

ENCLAVE
DATA EXTRACTION

SUMMARY OF APPROACH

▪ The techniques and tools must be batch run at the command-line level and capable of
real-time inspection at high speed and large volume, against live logs.

▪ As OT protocols vary widely, it must assume that packet data contents are obfuscated,
crypt, trixie, or of an unknown “proprietary” structure.

▪ There is no use of Splunk, Wireshark, tshark, SIMs, or any other “fancy” tools. No session
reconstruction. Snort usage will be limited as part of the front-line batch, but it could be
considered after real-time parsing activities to check against Virus Total and/or Snort alerts.

The creation and subsequent maintenance of flow analytics will need
to be done in phases, with each phase building on the previous ones.

All steps are to be executed using existing enclave services.

1. As there is likely a large volume of collected
data from existing sensors, a logical starting
place would be to obtain a random selection
of packet captures that loosely represent the
entire enterprise at scale.

2. A manual inquiry into the existing
instrumentation should be requested and
documented.

3. A request to connect to a sample of live
sensors should also be made early on, as it
will quickly become part of the process
critical path.

4. Ultimately, the capture of packets by use
of in-line sensors or by mirroring ports at
switches is desired.

5. Note: The packets being captured will
likely contain ePHI and other regulated
information. As such, it is very important
that the early iterations remove any
non-header information to reduce the
administrative burden for these types of
regulated data. Creating this process, in an
auditable fashion, will be a challenge.
However, it can, and should, be executed at
the capture point.

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 3

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

1. Assuming clear blue sky instrumentation,
develop an initial command line script(s), as
outlined below, that accomplishes the desired
query.

2. Run the script(s) against static pcaps. If
written properly, most scripts should work
okay, as they should use only the
highest-level header information. Any errors
will inform of gaps in instrumentation
configuration. Use these gaps to request
changes to capture configurations and/or
sensor locations.

3. Where the instrumentation cannot be
modified, rework / hack the scripts to obtain

the desired end result. It is critical to keep
this minimized, as “special snowflake”
configurations and approaches will reduce
automatability, increase the maintenance
tail, and greatly reduce resiliency.

4. Repeat steps 1 through 3 for all proposed
queries until the stress testing against a
static environment is satisfactory for the
baseline query set.

5. Once the baseline is built and working
against a static environment, gradually
introduce one query at a time to the
dynamic/real-time environment. Test and
retool along the way using an approach
similar to steps 1 through 4. This will likely
require minor reworking of scripts to use
netflow gathering techniques over static
pcaps.

DATA PARSING /
SCRIPT DEVELOPMENT

USER CONSUMPTION

METHOD TO DEFINE, DEVELOP,
AND IMPLEMENT QUERIES
What an organization wants to do always
exceeds what actual development and
implementation resources allow. It is
suggested that each desired query be
administratively routed through this
summary process. Then, the full list of
queries can be scored/prioritized, and a cut
line can be established and, finally,

developed. Ideally, the organization will
leverage agile methodologies to administer
the development process, asking:

▪ What do we want to look for?
▪ Why are we looking for it?
▪ How do we want to find it?
▪ What are we going to do with the results?

It is suggested that an existing user interface / front end be selected versus building a new,
dedicated interface for flow analytics. Creating a new front end would be inefficient, and it
would fail to take advantage of the scale of other existing platforms.

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 4

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

▪ Sniffers must be turned on and
appropriately instrumented, with an
additional focus on lateral movement points,
as most existing sensors will likely be
inbound / outbound due to the protective IT
model.

- An edge-edge perimeter is likely.

- Should include a server enclave
perimeter.

- Should include a desktop enclave
perimeter.

- Switches with important servers and
such.

▪ (Security) Stage 1 and some Stage 2
exploits are nearly impossible to detect and
are almost not worth the effort. Stage 2 will
include C2 and crypto libs, and they must
be transmitted in the clear, so these are a
little easier to detect. Stage 1 is typically
very tiny; e.g., buffer overflow.

▪ Much of the data involved will be subject
to HIPAA and other regulations; therefore,
an atypical amount of care will be
necessary when handling and manipulating
data to avoid violations or unnecessary
protection costs.

WEAKNESSES

TOOLS

The approach is fundamentally based on incident handler / defender security techniques, so
initially, it will have gaps:

SUMMARY OF TECHNICAL STRUCTURE

The following is a summary of the top-level details for an initial
rollout. With these items and the proper instrumentation, one might

have insight into as much as 60% to 75% of enterprise activities.

L2/3:
arpwatch
netflows

cam tables from important switches

L4+:
bro & bro-cut

after-the-fact Snort

tcpdump

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 5

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

▪ Bro analytics logs for input (bro-cut to
parse)

- conn.log (network connections)
- dns.log (resolutions)
- files.log (any files moved or changed)
- Use http.log (“internet” communications)

▪ Collaboration and correlation

▪ Timeline analysis; develop an
understandable sequence of events without
single machine session reconstruction. Flow
reconstruction will be critical.

▪ Perform initial reconnaissance:
- When starting and stopping
- What things are the stations and hosts
doing?

- What protocols are involved? Any
 obvious abnormalities?

- Who is who?

▪ Long tail review (least frequent events)

▪ Security scripting that looks for:
- LLMNR games
- Entropy detection for DGA and crypto of
all sorts

- Arp games

TECHNIQUES

Following are a series of basic, standard commands that illustrate the “how” element of the
technical implementation. As noted above, the approach focuses exclusively on scriptable
command line inputs. This list is meant to be a sampling and is by no means intended to be
exhaustive (or really even scratch the surface).

▪ $ capinfos [name].pcap looking to:
- Start and stop timestamps
- Establish PCAP duration
- Establish a baseline for the timeline analysis

▪ $ bro [name].pcap will prepare the capture for use with bro-cut commands and create
conn.log, files.log, dns.log, http.log plus many others not referenced in this paper

▪ Bro uses tcp[13] & 7 != 0 to capture any TCP packets with SYN, FIN, or RST control bits
set. These packets delimit the beginning (SYN) and end (FIN or RST) of each TCP connec-
tion. Because the TCP/IP packet headers contain considerable information about each TCP
connection, using just these control packets, one can extract connection start time, dura-
tion, participating hosts, and the number of bytes sent in each direction. Thus, by capturing
only 4 packets (the two initial SYN packets exchanged and the final two FIN packets
exchanged), one can determine a great deal about a connection even though one has not
looked at any data packets.

EXAMPLE COMMANDS
AND METHODOLOGY

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 6

FLOW ANALYTICS PLATFORM FOR
OPERATIONAL TECHNOLOGY (OT)

3 TERRITORY SOLUTIONS / 3tsoln.com PAGE 7

▪ $ wc -l conn.log tells us how many conversations have been made. This is an example of a
normalizing value that can, with future inputs, be used as part of a statistical analysis. It also
lets us see how “heavy” a segment might be.

▪ $ cat conn.log | bro-cut id.resp_p | sort | uniq -c | sort -nr will provide a count list on the
responding port; this will identify the chatty ports to be correlated against the expected list
of ports.

▪ $ cat conn.log | bro-cut id.resp_h id.resp_p | grep [port to be investigated] | sort | uniq -c
| sort -nr will provide a list of investigated ports with responding IPs; i.e., who is listening
and on what port.

▪ $ cat conn.log | bro-cut id.orig_h id.orig_p | grep [port to be investigated] | sort | uniq -c
| sort -nr will provide a list of investigated ports with originating IPs; i.e., who is talking and
on what port.

▪ The previous commands can be augmented with the bro-cut -d or -u flag to incorporate
timestamping in local or UTC formats. This is important because, from a flow perspective, it
will allow for reconstruction of communication channels. However, it will initially require
heavy human interaction. For example, once Device A converses with Device B, Device A
sends a UDP status packet to Device C.

▪ $ cat conn.log | bro-cut id.resp_p | grep ‘25\|110\|135\|139\|143\|[plus many others]’ |
sort | uniq -c | sort -nr provides a list of Windows services that probably shouldn’t be part
of a control system network segment, as their existence indicates a comingling of business
and control functions.

▪ MDE and FRCS are deterministic and may use UDP; the commands to parse this informa-
tion include udp_request and udp_reply.

▪ (Security) $ cat files.log | bro-cut file_hash | sort will provide a list of MD5 hashes for files
that can be submitted to Virus Total or be run against the local AV / HBSS. Note: the hash
activity requires consumption of the data packets though can be performed without actual-
ly inspecting contents. Hashes meet the intent of the effort and allow for greatly reduced
storage and regulatory protections as the data packets are processed then dropped.

▪ Bro-cut further supports regular expressions, so how parsing is created is limited only by
the imagination.

▪ Funnel off malformed header packets. Inherent to bro, this allows for a stack of “What are
these?” packets to be manually reviewed and coded against.

EXAMPLE COMMANDS
AND METHODOLOGY (cont.)

